Shenzhen Zion Kaifull Automation Technology Co., Ltd.

Kaifull Automation Technology Co. Ltd.

Manufacturer from China
Active Member
3 Years
Home / Products / Hybrid Stepper Motor /

60HS156 Series 2 Phase Hybrid Stepper Motors

Contact Now
Shenzhen Zion Kaifull Automation Technology Co., Ltd.
Province/State:guangdong
Country/Region:china
Contact Person:MrBruce Niu
Contact Now

60HS156 Series 2 Phase Hybrid Stepper Motors

Ask Latest Price
Video Channel
Brand Name :PRMCAS
Model Number :60HS156 Series
Certification :CE, ROHS, CCC
Place of Origin :CHINA
MOQ :≥50pcs
Supply Ability :10000pcs per Month
Delivery Time :7-14days for standad version customization 3-4weeks
Packaging Details :50pcs for each carton
Frame Size :Nema 24, 60mm
Phase :2 Phase
Step Angle :1.8°
Angle Accuracy :0.09°
Rated Current :2.8/4.0 A
Holding Torque :1.56 N.m
Wires :4
Highlights :Top Performance, Long Lifetime, High Speed, High smoothness
Shaft Type :Single shaft
Customization :Supported
Payment Terms :Company account based T/T
more
Contact Now

Add to Cart

Find Similar Videos
View Product Description

1. Product Overview

Step motor is a motor that converts the electrical pulse signal into the corresponding angle displacement or the line displacement. It can use the quantity and frequency of the pulse to control the rotation (rotation angle, rotation speed) in automation applications. For each of the pulse, the motor rotor rotates a angle or forward, and its output angle shift or line displacement is proportional to the input pulse, and the speed is proportional to the pulse frequency. Therefore, step motor is also called pulse motor.

In the case of non-overload, the speed of the motor and the stop position depends only on the frequency and number of the pulsed input, without being affected by the load change. That is to say, add a pulse signal to the motor, and the motor turns a step distance. The advantage of this linear relationship between pulse and angle rotation, plus that a step motor only has periodic errors without cumulative errors, make step motor widely used in automation speed, position and other control fields easily.

With the development of product research and development of technology, the performance of the step system has been even more improved. If the stepper system is not overloaded, there will be no step loss mostly nowadays, and life time very long, almost no need maintenance, which makes steppers popular and widely used in many kinds of industrial automation motion control applications.

The step motor is a motion execution agency that converts the pulse signal into corner displacement or line displacement. Taking the most used hybrid stepping motor as an example, its main features are as the followings.

High loading capacity. Its speed is not affected by the load size. Unlike ordinary motors, the speed will decrease when the load is increased. The speed and position of the step motor have strict requirements.

Convenient control. The step motor rotates in "step", and the digital characteristics are obvious.

Simple structure. The traditional mechanical structure for speed and position control are more complicated, and it is difficult to adjust. After the adoption of step motor, the structure of the whole machine is simpler. At the same time, no need special maintenance, and the failure ratio is very low.

100% still stop, no shaking. Because the stepper motor does not depend on feedback such as position, speed, etc., when the input pulse stops, the step motor can be in an absolute stop. The servo motor cannot be absolutely stopped, so the characteristic of the stepper motor is definitely very popular in the need for high precision applications.

Low noise. By proper subdivision setting, the step motor runs very smooth and the noise is small, which is especially suitable for noise sensitive applications.

Of course, there are obvious disadvantages of the stepper motor, such as high running temperature. Although it does not affect the service life of the stepper motor, it is not suitable for heating sensitive applications. However, with the implement of the step drive control algorithm, the input current adjustment range is getting larger and larger, which helps to reduce the motor heating significantly.

The Applications of Kaifull PRMCAS Hybrid Stepper Motors

The stepper motor is mainly used in the field of CNC machine tool manufacturing. The reason why it is mainly used in this field is that the motor does not require A/D conversion and can directly convert digital pulse signals into angular displacement, which is exactly what CNC machine tool equipment needs and cannot be achieved by many other types of motors. Therefore, the stepper motor can be said to be the most ideal executive component of CNC machines, and it will naturally be widely used in the manufacturing field of CNC machines.

Stepper motors can also be used in many other machinery, such as motors in automatic feeding machines and general-purpose floppy disk drives. In addition, it can also be applied in printers and plotters.

Stepper motors have the characteristics of fast start stop and positioning, and are often used as actuators for position control in the field of digital control. In the fast operation of a stepper motor, it is required that the driving circuit provide the driving current to the stepper motor winding as close as possible to the technical specifications required to generate sufficient torque. The maximum allowable temperature on the surface of the stepper motor. Stepper motors are used in conjunction with drivers, and many drivers support subdivision function, which achieves very small step angles and more precise control. The torque of the stepper motor will decrease as the speed increases. The accuracy of a general stepper motor is 3-5% of the stepper angle and does not accumulate. The stepper motor can operate normally at low speeds, but cannot start above a certain speed, accompanied by a whistling sound.

Widely used in ATM machines, inkjet printers, engraving machines, photo machines, spraying equipment, medical instruments and equipment, computer peripherals and massive storage devices, precision instruments, industrial control systems, office automation, robots and other fields, especially suitable for applications that require smooth operation, low noise, fast response, long service life, and high output torque.

Machine tool industry

Stepper motors are widely used in the machine tool industry, mainly for controlling the feed and positioning of machine tools. In CNC machine tools, stepper motors can accurately control the machining position and speed of workpieces, thereby achieving high-precision machining. In addition, stepper motors can also be used to control the automatic feeding and tool changing functions of machine tools.

Automation equipment

Stepper motors are also widely used in automation equipment, such as automated production lines, automated packaging machines, automated handling robots, etc. Stepper motors can accurately control the movement and position of equipment, thereby achieving efficient automated production.

Electronic devices

Stepper motors also have certain applications in electronic devices, such as in various stages of electronic product production, such as solder paste printing, SMT placement, reflow soldering, visual inspection, production of cables with terminals, dispensing machines, screen laminating machines, etc. They can also be used in many devices, such as ATMs, vending machines, 3D printers, scanners, printers, etc.

Medical equipment

Stepper motors are also applied in medical equipment, such as medical robots, surgical instruments, etc. Stepping motors can accurately control the movement and position of robots and surgical instruments, thereby achieving high-precision surgery and treatment.

The automotive industry

Stepping motors are also applied in the automotive industry, such as seat adjusters, air conditioning door controllers, and so on. The stepper motor can precisely control the position and movement of car seats and air conditioning doors, thereby improving the comfort and safety of the car.

In the field of robotics

Stepping motors are also widely used in the field of robotics, such as industrial robots, service robots, etc. Stepping motors can accurately control the motion and position of robots, thereby achieving efficient production and service.

In summary, stepper motors have a wide range of applications in many fields, and their high accuracy, fast response speed, and convenient control make them the core components of many automation equipment. With the continuous progress of technology, the application fields of stepper motors will continue to expand and deepen.

2. Hybrid Stepper Motor General Technical Specifications

Step Angle 1.8° (2 Phase)
Step Angle Accuracy 0.09°
Shaft Type Single, Dia. 8.0mm (Customizable)
Max. Temperature Rise Less than 80 °C (Rated Current)
Max. Surface Temperatures Max Allowed 100℃
Ambient Temperature -20 °C ~ +50 °C
Insulation Grade 100 MΩ Min. , Class B
Dielectric Strengt 500 VAC for 1 Minute
Max. Axial Load 20N
Max. Radial Load 90N (10mm from mounting Surface)
Certificates Rohs, CE, CCC (As per Customer Need)

3. Hybrid Stepper motor Performance Datasheet

Model Current Resistance Inductance Holding Torque Detent Torque Rotor Inertia Bi/Unipolar Weight Length
A/Ø Ω/Ø mH/Ø N.m N.cm g.cm2 # of Leads kg mm
60HS156-2804S-54-8F 2.8 1.2 3.6 1.56 9.0 450 Bi (4) 0.83 54
60HS156-4004S-54-8F 4.0 0.6 1.8 1.56 9.0 450 Bi (4) 0.83 54

4. Mechanical Dimensions (in mm)

60HS156 Series 2 Phase Hybrid Stepper Motors

5. Wiring Diagram

60HS156 Series 2 Phase Hybrid Stepper Motors

6. Torque Speed Curves

60HS156 Series 2 Phase Hybrid Stepper Motors

Inquiry Cart 0